
Det Kongelige Danske Videnskabernes Selskab
Matematisk-fysiske Meddelelser, bind 29, nr. 1

Dan. Mat. Fys. Medd. 29, no. 1 (1954)

ON THE DUAL SPACES 
OF THE BESICOVITCH ALMOST 

PERIODIC SPACES
BY

ERLING FØLNER

København 1954
i kommission hos Ejnar Munksgaard



Printed in Denmark. 
Bianco Lunos Bogtrykkeri A-S.



Introduction.
As is well known, see for instance [5], p. 36, for every p, 

ik 1 <p<°°» a Bp-a. p. function f is a function to which there 
exists a sequence of ordinary almost periodic functions <pn such that

f — <Pn ||np_> 0 tor n -> oc.

Here the Æp-norm is defined by
i i

II f\\Bl> = finí £(æ) |Pdæ)P= (ü{\f(x) |p}jP

If in particular || f ||/}/» = 0, the function /is called a Bp-zero 
function. If we set f = g when || f—g ||bp = 0, the equivalence 
classes for this relation are called Bp-a. p. points. Multiplication 
of a Bp-a. p. point by a complex constant, addition of two Bp-a. p. 
points, and the Bp-norm of a Bp-a. p. point are defined in the 
natural way. Thus the set of Bp-a. p. points becomes a linear 
metric space, [5], pp. 37—39. Since the Bp-a. p. space is complete, 
see for instance [5], pp. 54—57, it is a Banach space.

To every Bp-a. p. function f, 1 < p < °°, is associated a 
Fourier series

/■(.T) ~ Z « W

where the coefficient function

a (A) =

is 0 only for a denumerable number of values X, the so-called 
Fourier exponents of f, [2], p. 262. Since all functions in a Bp- 
a. p. point have the same Fourier series, this Fourier series is 
called the Fourier series of the Bp-a. p. point.

i



4 Nr. 1

Let M be an arbitrary module of real numbers, i. e., a set 
of real numbers which together with and A2 also contains 
A1— A2. A Bp-a. p. function (Bp-a. p. point) is called a Bp-a. p.—M 
function (Bp-a. p.—M point) if all its Fourier exponents belong to 
M. The subspace of the Bp-a. p. space consisting of all Bp-a. p.—M 
points is a linear closed subspace and hence a Banach space. If in 
particular M is the module of all real numbers, the Bp-a. p.—M 
space is the Bp-a. p. space itself.

We consider a complex bounded linear functional A on the 
space of Bp-a. p.—M functions, i. e., a complex functional which 
satisfies

A (Af) = AAf (Â complex)

A(f+g) = Af+Ag

M^clldk.
where C is independent of /’. Here we may assume C chosen as 
the smallest of its possible values. C is then called the norm of 
A and denoted by || A ||. It is obvious that A takes the same value 
on all Bp-a. p.—M functions in a Bp-a. p.—M point. Thus A may 
also be considered as a bounded linear functional on the Bp-a. p.— 
M space. With usual addition, usual multiplication by a complex 
constant, and the above norm, the set of bounded linear functionals 
on the Bp-a. p.—M space is a Banach space, the so-called dual 
space of the Bp-a. p.—M space.

We shall prove in the present paper that for 1 < p < oc and 
any module M of real numbers the dual space of the Bp-a. p.— 
M space is the Bq-a. p.—M space where q is determined by 
1/p 4- I/7 = 1. The isomorphism (i. e., the linear one-to-one 
isometric mapping) of the dual space of the Bp-a. p.—M space 
on the Bq-a. p.—M space is given by

Aff where Aff f = M { fg }.

'fhe dual space of the Bx-a. p.—M space will also be completely 
characterized.

We shall deduce this main result by two rather different 
methods. The first method is the most elementary one and uses 
only the ordinary theory of generalized almost periodic functions. 
It is based on previous results by R. Doss [7], [8], and is an 
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extension of the method used by Doss. This method is set forth 
in Part I of the paper.

'fhe second method, which is set forth in Part II of the paper, 
consists in the establishment of a close correspondance between 
the Bp-a. p.- M points and the measurable p-integrable functions 
on the Bohr compactification of the real axis by all ordinary 
a. p.—M functions. When this correspondence is established, our 
main result concerning the dual space of the Bp-a. p.—M space, 
1 _<p<oc, is an immediate consequence of the generalization 
to the abstract ease of F. Riesz’s classical result concerning the 
dual space of the space of measurable p-integrable functions, 
1 < p < oc.

Part 1.
1. Preparations.

1. We have mentioned in the Introduction that the Bp-a.p. 
space, 1 p<oo, is a complete space; or, in other words, 
that if fn is a //'’-fundamental sequence of Bp-a. p. functions: 
I) fm — in ||/¿'' “*■  () f°r "h n 3C> then there exists a Bp-a. p. func­
tion /’such that ¡I f—fn ||/{/>--> 0 for n oc. We shall use moreover 
that f, as shown in [5], pp. 54—57, can be constructed “from 
pieces of the fn" as indicated on the following figure

where (I = 7’0 < 7\ < T2 < • • • -->■ oc and the only extra demand 
to 7’n is of the form

Tn> t(T0, 7\, •••, /’„.J, n = 1,2, •••.

When in the following the letter G is applied (instead of the 
usual B), this indicates that the theorems are true for all three 
types of generalized almost periodic functions, the StcpanolT a. p. 
functions, the Weyl a. p. functions, and the Besicovitch a. p. 
functions (for their definitions see for instance [5], pp. 33—39).
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2. On account of Holder’s inequality we have || /’||(jPi 5 
Ufor l<pi<p2. Hence a Gl>,-a. p. function (Gp‘-zero 
function) is also a Gp*-a.  p. function (GP1-zero function).

3. A bounded G1-a. p. function (bounded G1-zero function) 
is a Gp-a. p. function (Gp-zero function) for all p, 1 < p < oc ; 
[5], p. 62. We shall call such a bounded G*-a.  p. function (bounded 
G^-zero function) a G -a. p. function (G -zero function).

4. Deeper-lying theorem: A B1-a. p. point which contains a 
Bp-bounded function for a fixed P, 1 <P < oc, contains also a 
Bp-a. p. function. [5], pp. 99—106.

5. We consider the inequalities

where 1 S p < og. See [6], pp. 220—221, exercise 10. These 
inequalities, the latter in connection with Holder’s inequality, 
show that the mapping

(i) A-’-Zi.
1

where f2 = | /i |p sign fx and hence /i = | /‘2 |p sign f2 is (or more 
correctly: may be considered as) a homeomorphic mapping of 
the Gp-a. p. space on the G1-a. p. space. Hereby we have used 
that (in consequence of the two inequalities) fx and f2 are simul­
taneously (ordinary) a. p. functions. We see further that in this 
case they “majorize” each other; [4], p. 60. Hence (1. c.) fx and 
f2 are simultaneously a. p.—M functions. Since a Gp-a. p.— M 
function is a function which can be Gp-approximated by a. p.— 
M functions (cf. 8. below), we conclude that if /'j is a Gp-a. p.—M 
function, then f2 is a G1-a. p.—M function, and conversely. Hence 
(1) is also a homeomorphic mapping of the Gp-a. p.—M space 
on the G^a. p.—M space.

Combining this result and the corresponding result with p 
replaced by g, 1 5g<^c, we see finally that

fi~^ fz>
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where f, = | fA |'/ sign fx, and hence /i = \f2\p sign f2 is a homeo­
morphic mapping of the Gp-a. p.—M space on the Gq-a. p.—M 
space for any module M of real numbers. In particular, when 
fi is Gp-a. p.—M, then f2 is Gq-a. p.—M, and conversely. Cf. [11], 
pp. 422—423.

6. If (pn is a sequence of Gap-a. p. functions which Gap- 
converges to the Ga,,-a. p. function f and ipn is a sequence of 
(/“’-a. p. functions which (/“’-converges to the Gaq-a. p. function 
g, for fixed a 1, 1 < p < oc, 1 < q < oo, 1/p + 1/q = 1, then 
(pn y>n will (/“-converge to fg. This follows easily by application 
of Holder’s and Minkowski’s inequalities. In particular, when 
f is a Gap-a. p.—M function and g is a Gaq-a. p.—M function, 
then fg is a G“-a. p.—M function. Cf. [11], pp. 416—417.

If /is a (/“-a. p.—M function and g is a G -a. p.—M function 
for fixed a 1 , then fg is a (7“-a. p.—M function. In order to 
see this we introduce the cut-off function

Since

(K*))n
I /(x) for |/(æ)|Sn
I 7i sign f (.r) for | f(x) | > n.

we see that if /is a. p.—M, then (/)„ is a. p.—M as it is majorized 
by /; [4], p. 60. Il follows that in the general case (f)n is G* -a. p.— 
M. Further (f)n f for n-> oo; [5], pp. 44—45. Since g is 
bounded, it follows that (f)n g G“ fg. Both (f)n and g are Gx-a. p. 
—M, in particular (72-a. p.—M. From the above-treated case 
we conclude that the bounded function (f}ng is a (/X-a. p.—M 
function. Then the (/“-limit fg is a (/“-a. p.—M function, as was 
to be proved.

7. Let M be a denumerable module of real numbers cq, 
a2, •••. By a sequence of Bochner—Fejér kernels belonging to 
M we understand a sequence of non-negative trigonometric poly­
nomials with exponents from M, positive coefficients, mean 
values 1, and which converge formally to e'“,|X. It follows 
that the coefficients are < 1 .

Let
¿’a (An) eiÂ"x = (A) eiAx 
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be a trigonometric series and M an arbitrary denumerable module 
of real numbers cq, a2, •••. Let

M*)  =
be a sequence of Bochner—Fejer kernels belonging to M. Then

^.(•o =
is called a Bochner—Fejer sequence belonging to M of the 
trigonometric series. If every X for which a (Â) # 0, belongs to 
M, then the series is said to belong lo M, and om is called a full 
Bochner—Fejer sequence of the series.

8. Let f be a Gp-a. p. function for a fixed p, 1 < p < og , 
with the Fourier series

/ (•r) ~ ¿ o G) e‘ÀX-

Let M be a denumerable module and ain a Bochner—Fejer 
sequence belonging to M of the Fourier series. Then || ||gp ■*"  
II/IIgp (see [2], PP- 263—266). If | /'(.r) | < C for all .r, then 
I am (x) I = C for a^ x- If am i's a full Bochner-Fejer sequence 
of the series, then am G'f f for n? —> oc; [2], pp. 262—266.

9. If f yja (Å) e'is a /P-a. p. function and g (.r) =
is a trigonometric polynomial, then (obviously)

-'/{/»} = Z« U)bW-

If /'~ V« (A) is a p. function and g ~ b (A) e1?'*  is a 
B9-a. p. function for fixed p and q, 1 <p < oc, 1 < </ < oo, 1/p 
+ I/7 = 1, and furthermore a (Â) b (2) = 0 for all Å, then

= 0.

In order to see this, let am be a full Bochner-Fejér sequence 
of f. Then by 8. we have crm™f f and, using also the above 
remark, M{amg} = 0. As a result of 6. the function fg is 
/P-a. p. and M { am g} -> M { fg}. Thus M { fg ) = 0, as we 
had to show.

10. If a sequence A„( of bounded linear functionals on a
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Banach space converges weakly, i. e., Am f converges for every 
/' in the Banach space, then there exists a constant C such that 
Il A,n II < C lor all m. See for instance [9], p. 21.

2. Necessary and sufficient conditions for a trigonometric 
series to be the Fourier series of a Bp-a. p. 

function for a given p, 1<P< oc.

Doss, [7], p. 209, and [8], pp. 89—91, has proved the following 
two theorems.

Theorem A. A necessary and sufficient condition for a trigono­
metric series ^ane'?'n'1 to be the Fourier series of a BX-a. p. 
function is that for a full Bochner-Fejér sequence am of the series 
there exists a constant C such that | <rm (.r) | < C /or all x and all m.

Theorem B. A necessary and sufficient condition for a trigono­
metric series ^ane'^"x to be the Fourier series of a B1-a. p. 
function is that a full Bochner-Fejér sequence am of the series has 
the following property: To every e > 0 there exists a ô > 0 such 
that Me { I am (a?) I } < £ for any measurable set E with upper mean­
measure m E < ô.

The remaining cases, 1 < p < oc, are dealt with in the fol­
lowing :

The Orem 1. Let p be a fixed number, 1 < p < oc. A necessary 
and sufficient condition for a trigonometric series ^ane'^"x to be 
the Fourier series of a Bp-a. p. function is that for a full Bochner- 
Fejér sequence am of the series there exists a constant C such that 
II °m ||ö'' < C for all m‘

Proof. The necessity of the condition is clear, for if the series 
is the Fourier series of the Bp-a. p. function f, then as stated in 
1, 8. we have ||<rm||BP< || /J^p.

We shall now show that the condition is sufficient. Assuming 
the condition fulfilled, we show first that the series is the Fourier 
series of a ZF-a. p. function; and we do this by showing that it 
fulfils the condition from Theorem B. Let E be an arbitrary 
measurable set of real numbers; let e denote the characteristic 
function of E; and let om be a full Bochner-Fejér sequence of 
the series. Determining q by l/pA-l/q — 1 we obtain by Holder’s 
inequality
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ME { I O) | } = Af { e (x) I am (x) I } <

^{e^Ÿ = \\am\\Bl>(mEŸ<C(rnEÿ'

and this tends to 0 for ni E-+0. Hence the condition from 
Theorem B is fulfilled so that our series is the Fourier series of 
a /T-a. p. function 7i. Thus, by 1,8. we have || h — om ||Bi -► 0 
for mesc, in particular || am— an ||Bi—>■ 0 for in, n oo.

We shall now determine a /T-limit function g from pieces of 
the as indicated on the following figure

<7 3 Oo &3

and show that we can determine 0 = To < 1\ < T2 < • • • -> oc 
so that II g ||/jp < esc.

From
II ||bp = i™ -1-( I am (x) |" dx < Cp

Í I O) I" dx < 2 Cp
J±Tln_i

respectively, m = 1,2, • • •. Besides choosing Tm > I (To, • • - , 
T'm—i) which by 1, 1. secures the /^-convergence of am towards g 
we choose T > 7„l + 1 and Tm > s (Tm_i) for m — 1,2, • • *. Then 
for Tm <T<Tm + i we get

T + x 2 1 J—T

follows

H111 I am O) I'" dx < 2 CP.
I T I -> 00 I •'()

Hence there exists a tm such that

Ml<>* coI"dx<2c" for Id>I •'()

and there exists an s — s(Tm_i) such that

1
T-(±Tm_J for i T > s
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For — î’m +1 < 7’ < — Tm we get analogously that

I 9 (æ) |P dx < 4 CP-
1 »'y

i
Hence || g ||Bp 4/’C<oc, as desired.

We have seen that our series is the Fourier series of a B1-a. p. 
point which contains the Bp-bounded function g. It follows by 
the theorem in 1, 4. that the B1-a. p. point contains a Bp-a. p. 
function f. Thus our series is the Fourier series of a Bp-a. p. 
function f. This completes the proof of Theorem 1.

Corollary. Let Vo(A)e'^r be a Bp-u. p. function for a 
fixed p, 1 < p < oc, and let M be an arbitrary module of real 
numbers. Then the subseries

2>(A)
Zem

is the Fourier series of a Bp-&,. p. function f .
Proof. Without loss of generality we may assume M to be 

denumerable. A Bochner-Fejér sequence crm belonging to M of 
the original series 5// (A) e1^'1 is plainly a Bochner-Fejér 
sequence belonging to M of the subseries u (A) el¿x, and for 

ÂEM 
this latter series it is a full Bochner-Fejér sequence.

From 1,8. it follows that || am ||ßp < || f ||ßp. This implies, 
by Theorem 1, that u (A) el?'x is the Fourier series of a Bp- a. p. 
function, q. e. d. ¿EM

Remark. The Corollary is also true when p = 1. (Cf. Doss 
[S], p. 91). fhe Corollary in the case p = oc is an immediate 
consequence of Theorem A.
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It is natural to mention, in connection with the above theorems, 
the following theorem of Pitt, [10], pp. 144—147, which gene­
ralizes the Hausdorff-Young Theorem for ordinary Fourier series.

Theorem C. Let p and q be fixed numbers with l/p 4- 1/q = 1 
and 1 < q <2 < p < oc.

(a) If f is a B''-i\. p. function with the Fourier series anel'l,x 
we have

(b) Every trigonometric series 5Janel^llX with | an |9 < + og is 
the Fourier series of a Bp-a. p. function f, and

Part (b) of this theorem will be applied in the following.

3. The dual space of the Bp-a. p.-M space, 1 <p < oc.

Theorem 2. Let M be a module of real numbers and p, q fixed 
numbers, 1 < p < oc, 1 < q < oc, satisfying 1/p + I/7 = 1 . Let 
further g be a Bq-&. p.—M function. Then there exists a Bp-&. p.— 
M function f such that

(2) |M{/»}| = MIb'-Mb’-

Thus, when Agf = 4/{ fg } Zs considered as a bounded linear functio­
nal on the Bp-8l. p.—M space, the norm of Ay is equal to || g ||H</.

2
Proof. As shown in 1. 5. the function f — | g |/J sign g is a 

Bp-3x. p.—M function. An immediate calculation shows that it 
satisfies (2).

Theorem 3. Let M a module of real numbers. Let further 
g be a Bx-a. p.—M function. Then, when f runs over all Bl-i\. p.—M 
functions and z runs over all Bx-zero functions we have

(3) sup 
/

In other words: When Agf = M{/^} is considered as a bounded 
linear functional on the Bl-i\. p.—M space, the norm of Ag is equal to
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lim II//H b" = ni in SUP I 7 (æ) + z (.r) 
q -> X z x

Proof. We shall begin by showing that the second sign of 
equality in (3) is valid and do this in two steps, one for < and 
one for^.

In order to show the inequality <, we shall prove that for 
any Bx-zero function z we have

lim ¡I 7 ||ßQ < sup I 7 (x) + z (x)
q -> X X

Without changing the value of the left-hand side we can replace 
7 by 7 + z whereafter the inequality is clear.

In order to show the inequality > (and the existence of the 
minimum) we have to construct a Bx-zero function z such that

lim II 7 ||Bq > sup I 7 (.r) + z (;r) |.
q -> x x

Let (Jin be a full Bochner-Fejér sequence of 7. Then || am ||B</ ' ~ 
II 7 ||b'/ for 1 ^7 < oc, so that

(4) lim ||7||b'/^ lim || am ||B</ = sup |or,n(.r)
q -> 00 q -> 00 x

(for the last sign of equality, see [3], pp. 110—111). We construct 
now by I, 1. a B1-limit function f from pieces of the <r,n. Then 
it follows from (4) that

lim II 7 ||Bq > sup I /’(.r)
q X X

and obviously f = g + z where z is a Bx-zero function.
Thus the second sign of equality in (3) is established.
We shall now prove that the sign < holds between the first 

and the third term in (3). When f is a B1-a. p. function, 7 a 
B°°-a. p. function, and z a Bx-zero function we have M^fg\ = 
4/ { / (.7 + z) }> which we obtain from M { (f)n 7 } = M{ (f)n (g + z) } 
when we let n -+■ sc (see end of 1, 6). It follows that

y{/X3_+_z)
m<7|}
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Finally we shall show that the sign > holds between the first 
and the second term in (3). On account of Theorem 2 there 
exists for every p, 1 < p < oc, a Bp-a. p.—M (and hence B*-a.  p.— 
M) function fp such that when 1/p + l/ç = 1

I M{ fr 9 } I = II fp l|ßp II9 ||b'' 5 Il fp ||b> II9 ||b’ •
Hence

SUP -ïft i, — hm 11.711;//.
p H fp ||b‘ <z->oo

This completes the proof of Theorem 3.
It will now be natural to introduce in the set of Bx-a. p. 

functions the norm

II /’ll«00 = li™ II /* 11= min sup | /(.r) + z (x) |<7 -> co z X

where z runs through all Bx-zero functions. Obviously a Bx-zero 
function z may be characterized as a BX-a. p. function with 
II z ||b°° = 0. Now in the usual fashion we introduce Bx-a. p. points 
and organize them as a linear metric space. That the Bx-a. p. 
space is complete, and hence a Banach space, may for instance 
be deduced from Theorem 4, below. For an arbitrary module M 
of real numbers we define in the usual way Bx-a. p.—M functions 
and points. The subspace of Bx-a. p.—M points is called the 
B -a. p.—M space. It is linear and closed and hence a Banach 
space.

In the following theorem the term “isomorphic mapping” 
designates “linear one-to-one isometric mapping”.

Theorem 4. Main Theorem. Let M be an arbitrary module of 
real numbers and p, q tino numbers, 1 < oe, 1 < q< oc,
satisfying 1/p + 1/q = 1. Then the dual space of the Bp-a. p.—M 
space is isomorphic to the Bq-a. p.—M space. The isomorphic 
mapping is given by Ag -> g inhere Ag is the bounded linear functio­
nal on the Bp-a. p.—M space given by Agf = M { fg }.

Proof. On account of Theorem 2 and Theorem 3 it suffices 
to show that every bounded linear functional on the Bp-a. p.—M 
space has the form Agf = M{fg} where g is a Bq-a. p.— M 
function.

In the case p = 1 this statement was proved by Doss [8] 
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and was one of the main results of his interesting paper. With 
the previous preparations at our disposal we can easily treat the 
general case by his method.

We consider first the case where M is a denumerable module 
of real numbers Á2, • • •. We put

A(eU"x) = 5„

and form the trigonometric series

(5)

Let
M*>  =

be a sequence of Bochner-Fejér kernels belonging to M (see 1, 7.). 
Then if

is an arbitrary Bp-a. p.—M function the sequence

M®) = £d™bne>*"

is a Bochner-Fejér sequence belonging to M of f. Further

A(Jm = £d^bnan.

We shall show below that (5) is the Fourier series of a Bq-a. p. 
—M function g. Then we get by 1, 9.

A(Jm = >? dnn) bn an = M{amg}.

Further, from || f—<ym ||ßP -> 0 we get and
Aom -> Af. Hence

Af = lim Aom — lim ( am ff} = M(fg},
rn -> x ni ->■ x

as was to be proved.
That (5) really is the Fourier series of a Bq-a. p.—M function 

is seen in the following way. The sequence
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is a Bochner-Fejér sequence belonging to M of (5). We consider 
the sequence of bounded linear functionals Am on the Bp-a. p.—M 
space given by

Amf= Aam =

Since Aam —> Af, the sequence Am converges weakly to A in the 
Banach space in question. This implies, by the theorem in 1. 10, 
the existence of a constant C such that

|| A„, || ^ C for all m.

From Theorem 2 and Theorem 3 it follows that || Ani || = || Tm |(/}</. 
In the special case </ = sc we have

II Hzj50 = lim II T„, ||Bp = sup I Tm (.r) I.
p->oc X

Thus in the case 1 < q < sc it follows from Theorem 1 and in 
the case ç = sc from Theorem A that (9) is the Fourier series 
of a p. function. Of course this function is a Bq-a. p.—M 
function. This completes the proof of the Main Theorem in the 
case of a denumerable module M.

We now pass to the case of an arbitrary module M. Let

A («'* ’) = äA

for ze M. We shall first show that there exists only a finite number 
of A’s with I d} I > a when a is a positive constant. We do this 
indirectly by assuming that there exists an infinite sequence 
Â], Â2, • • • with I a^n I > a. Let kn be a sequence of positive numbers 
with X"kn — sc and if p < 2 such that Vk,, < sc and if p > 2 

p
such that kp~} < sc. By Theorem C this implies, since 
HJ^INb that

is the Fourier series of a ZF-a. p.—M function for p < 2 and of a 
Bp-a. p.—M function for — and thus in any case of a 
Bp-&. p.—M function.

Let am be a Bochner-Fejér sequence of f corresponding to 
the module generated by 21( À2, • ••. 'Phen



Nr. 1 17

^(x) = Z^l)knaÅiieiÅ^

where O < c^!!) < 1 and -> 1 for fixed n and m -> oo. Thus

A Om = Z c(nm) kn I aÅH I2 > «2 Z <£"> Àn -> oc

for m —> oo. Since øin BP f implies Af, we have obtained
a contradiction.

In particular we have shown that there exists only a denu­
merable number of A’s with The denumerable module
generated by these Â’s is denoted by Mi and the elements of 
this module by Z1( Â2, •••.

When we consider the contraction of A to the Bp-a. p.—Mr 
space, we conclude from the case of a denumerable module 
treated above that

is the Fourier scries of a Bq-a. p.—function 7 and that for any 
Bp-a. p.—M( function we have Af = M ( ffj }.

Now let f be a Bp-a. p.—M function whose Fourier exponents 
do not belong to Mj. Then Af = 0 since / can be /^-approximated 
by trigonometric polynomials without exponents in M,. From 
1, 9. we see that M{fg} = 0. Hence also in this case we get 
Af= •M{fg}.

Finally, let f be an arbitrary Bp-a. p.—M function. Then by 
the Corollary and the Remark, p. 11, we can write /in the form 

where /M1 is a Bp-a. p.—M, function and / — /M1 is a Bp-a. p.— 
M function whose Fourier exponents do not belong to Mj. From 
the two special cases just treated we get

Af = A (/«•) + A (f- =

+ = M{fg}.

This completes the proof of the Main Theorem.
Dan.Mat.Fys.Medd. 29, no. 1. 2
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Part II.
1. Bohr compactification of the real axis.

Let M be an arbitrary module of real numbers. We consider 
the Bohr compactification of the group /? of real numbers 
with usual topology by all (ordinary) a. p.—M functions. See 
e. g. [1], pp. 477—478.

We denote by H the subgroup of R which consists of the x 
for which e'?x — 1 for all AeM. In the uninteresting case when 
M = { 0 } we have H = R. If M has the form {zj£|z? — 0, 

± 1, ' " * } » we have H =

We shall make use of the following facts concerning 7?M (see 
the above quotation).

1) is a compact abelian group.
2) When the groups /?M and R/H are considered without 

their topologies, the group R/H is a subgroup of RM. The set 
R/H lies everywhere dense in /?M. Incidentally, in the case 

= 0, ± 1, • • •}, the group Rm is identical with

the topological group R/H.
3) When a continuous function on RM is contracted to R/H

and the contracted function is extended by periodicity with H as 
periodicity module to R, the resulting function is an a. p.—M 
function on R. Conversely, an a. p.—M function q> on R has H 
as a periodicity module and may therefore be considered as a 
function on R/H, and this function extends itself in unique 
fashion by continuity in to a continuous function <p' on /?M. 
This correspondence between the a. p.—M functions on
R and the continuous functions on is of main importance 
in the following.

4) When <p = eax, AeM, the function tp’ is a continuous 
character on /?M. All continuous characters on /?M can be obtained 
in this way. [Thus the module M with discrete topology is the 
character group of /?M.]
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5) Let M denote the Bohr mean and MN the von Neumann 
mean, both in R, and let \ denote the Haar integral in 
with §1 = 1. Then for any a. p.—M function cp on R we have

Mq> = M^q) = Jiq/.

2. Extension of the correspondence (p^^cp' between the a. p. 
—M functions on R and the continuous functions on to a 
correspondence between the B^-a. p.—M space over R and 

the space Lp over 1?M, 1 < /> < oc.

As well-known for any fixed p, \ ^.p < <x>, the set of measur­
able p-integrable functions (/(.r') on is organized as a Banach 
space Lp by the norm

1

hl|p= (S|ff(*')|' ,)í
while for p = oc the set of essentially bounded measurable func­
tions g (æz) on Rm is organized as a Banach space Lx by the norm

= lim 
p + x

= vrai max | g (x') 
x'

Functions which are equal almost everywhere (a. e.) are con­
sidered to be the same function.

For this, and also for results used in the following, we refer 
the reader to Loomis’ book [9], Chapter III, pp. 29—47.

We shall now prove the following
Correspondence Theorem. Let M be a module of real numbers. 

Then there exists a mapping f-> f of the set of B1-^. p.—M 
functions on the set of integrable functions on RM which is an 
extension of the previous mapping (p cp' of the set of a. p.—M 
functions on the set of continuous functions on RM. This mapping 
has the following properties.

1. For any fixed p, 1 p < oo, the contraction of the mapping 
to the set of Bp-a. p.-—M functions is a linear isometric mapping 
of the set of Bp-a. p.—M functions on the space Lp over Ru. It 
may be considered as a one-to-one linear isometric mapping of the 
Bp-a. p.—M space on the space Lp over R^.

2*
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2. For any B1-a. p.—M function f me haue

l/T = |r|. = =
Cf)' = (D. = (/")„

and when f is real

(f+y = (f')+ and (O' = (f)~

3. If fis a Bp-a. p.—M function and y is a Bq-a. p.—M function,
I /p + 1 /g = 1 , 1 < P < 00 » 1 — q < oc, then

(fgy = f'g'-

4. If the IP-a. p.—M function f has the Fourier series \ an e1 '?"t, 
then f has the Fourier series

in particular Mf = \ /'.
5. If f is a Bp-a. p.—-M function for a fixed p, 1 <p < oc, 

and 1 ç < oc, then

(I/I« sign f)' = I f|’sign f'.

6. The asymptotic distribution function of a real B1-a. p.—M 
function fis identical with the distribution function of f.

Proof. Let f be a Bp-a. p.—M function for a fixed p, 1 p 
<oc. Then there exists a sequence of a. p.—M functions qpn 
such that ypn BP f. In particular || ypm— yn ||bp -*■  0 for zn, ji -> oc. 
Hence by 3) and 5) we get

II Tm — Tn ||p = S I Tm ~ Tn I" = ( ( | Tm ~ Tn |'’) ' = || Tm ~ Tn ||n'' 0
for m, n^oc. It follows that ypn will p-converge to a function

from Lp which is determined a. e. This function gp depends 
only on f and not on the sequence cpn. To see this, let ipn be another 
sequence of a. p.—M functions which ^''-converges to f, and 
suppose that y>nJ^hp. Then the combined sequence (f\, y\, <p2, 
y>2, ••• will Bp-converge to f, and it follows that yp^ , <p2, 
yf,, • •• will p-converge, in particular that (pn — y>n _%.(). Hence 
||^p Up II/) =
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i

i

-a. p.—M function. We shall show that f 
= C. There exists (1,1,8.) a sequence

^-converges to f and has
99,t (,r') I < C and <pn 2> f which implies | f (.r') | < C,

|/>. and II^IIb/’ = H^nllp

is If -a. p.-—M, then gPi = gPt a. e., tor it 1 < p2 and
<Pn^f> then <pn^f, and we get <pn^ gPt, <pn^ glh the first of 
which implies that <pn^ gPt so that || gPt — gPi ||Pi = 0.

If in particular f is an a. p.—M function, then f,f, • • • /’
and since f, f, • • • X f we see that the function g corresponding 
to /' is f. Also in the general case when fis a If-a. p.—M function 
the corresponding function g, defined by the above procedure, 
will be denoted by f.

Now let f be a B°° 
belongs to Lx. Let sup | f (.r)

X

of a. p.—M functions <pn w
< C. Then
a. e. Thus f belongs to //, and furthermore vrai max |f'(.r')| 

sup |/(.r)|.
X
For a fixed p, l^/)<x, let f be a Bp-a. p.—M function. 

We choose a sequence of a. p.—M functions qpn which /¿''-converges 
to /’. Then || </,, ||bp -> || f\\BP, || ||p || f

If /is a ZT-a. p.—M function and <pn is chosen as usual we 
get Mf, p', and M<pn = so that

(i)

Let f and g be two If-a. p.— M functions. Let cpn and y>H be 
chosen correspondingly. Then we gel successively, when a and 
b denote complex numbers, acpn + bipnHi af + bg, (pn\ f’, ipn 
J> g', (ayn + bipny (af + bg)', a<ptl + by>n 1> af' + bg'. Since 
(a<pn + bipn)' = a (pn + bipn we get

(a/ + bg)' = af + bg'.

In an analogous way be obtain the relations in 2.
In order to prove 3. we consider first the case 1 < p < oc, 

and hence 1 < g < 00. That fg is If-a. p.—M follows from I, 1,6. 
Let (pn and y>n be chosen in the usual way for f and g respectively. 
Then bv I, 1,6. we get VnVn1^ f(.I- Hence we get successively
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<Pn A g'> (<PnVn)'-^ Cfg)'> and (pn y>n I fg' (by the result 
corresponding to 1,1, 6. for the space Lp). Since (<pnipny = <PnVn
we get

(fgy = f’g'-

Next, we consider the case p — 1, g = oc. That fg is B1-a. p.— 
M follows from I, 1, 6. We showed there that (f)ng fg. Hence 
((f)ng) -i {fg}' since our mapping is linear and isometric. 
However, (/)„ and g are Bx-a. p.—M, in particular B2-a. p.—M. 
Hence from the case just treated we get ((/*)„ ^)' = {{f^'g' = 
(f}ng' and this -X f' g' since f is in L1 and g' in Lx. Thus also 
in this case {fg}' — fg'. This completes the proof of 3.

From the special result (1) the general statement 4. is now 
an easy consequence.

The proof of 5. is analogous to the proof of 3. It uses I, 1, 5. 
instead of I, 1, 6. However, we shall not use 5. in the following.

Next, for any fixed p, 1 S p < oc, we consider an arbitrary 
function g(x') from Lp. There exists a sequence of continuous 
functions <pn on which _> g. [As stated in 3) every continuous 
function on is of the form 9? where 9? is an a. p.—M function.] 
Then || <pm — (pn ||bp = || <pm— <pn ||p -> 0 for in, noc and hence 
</n will Æp-converge to a Bp-a. p.—M function f for which f' = g. 
Since the mapping is linear and isometric, the Bp-a. p.—M 
functions f for which f' = g are exactly the functions in a Bp- 
a. p.—M point. Thus the contraction of our mapping f -*  f' to 
the set of Bp-a. p.—M functions maybe considered as a one-to-one 
mapping of the Bp-a. p.—M space on the space Lp. Obviously 
this mapping is linear and isometric. This proves 1. for 1 p < oc.

Next we consider the case p = oc. We have already seen 
that the set of Bx-a. p.—M functions is mapped into the space 
Jx and that || f < sup | f(x) |.

X
Now let g{x'} be an arbitrary function from Lx and let 

||<?||x = C. Let <pn be a sequence of a. p.—M functions such that 
|99n(æ')| < C and <pn-^ g. Then || (pm — 9?ji ||z#*  “► 0 for in, n -> oc 
and hence by I, 1, 1. we can construct a /¿’-limit function /’0 of 
the sequence (pn from pieces of the (pn. Il follows that | /’0(æ) | ‘ C 
and that f0 = g. Since sup | f0 (x) | ' Halloo and since, as we have

X
seen previously, all Bx-a. p.—M functions / which are mapped 
in g have
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(2) sup |/’(.r)| > Il .7 IL.
X

we see that

(3) sup |/0(x) I = I] g |L.
X

The Æx-a. p.—M functions /’which are mapped in the same 
g from i/ belong in particular to the same ß*-a.  p.—M point, 
and hence they differ from each other by a bounded ß1-zero 
function, i. e., a Bx-zero function. Thus they belong to the same 
ßw-a.p.—M point. All functions in this point are mapped in the 
function g. Thus the contraction of the mapping f to the 
set of ß°°-a. p.—M functions can be considered as a one-to-one 
linear mapping of the ßw-a.p.—M space on the space L°°. From 
(2) and (3) we can now conclude that for any ß°°-a. p.—M 
function f we have

||f IL = inf SUP |/’(æ) + z(æ)| = II/’IIb00
Z X

where z runs through all ß°°-zero functions. Thus the contracted 
mapping is isometric. Using that

p -> oo p -> oo

we get the other expression

II/’IIb00 = lim II/’IIb/'
p -> 00

for the ß°°-norm. This completes the proof of 1.
Finally we shall prove 6. Since this part of the Correspondence 

Theorem will not be used in the following we shall treat it shortly. 
It is known that every real ß1-a. p. function possesses an asympto­
tic distribution function. We shall use a proof of this theorem 
which was communicated to the authors of [5] by Jessen and 
published in [5], pp. 101—103; in order to save space we shall 
assume that the reader knows the proof and the notations used 
therein. It is easily seen that the function 0 (/'(.t)) occurring 
1. c., p. 102 can be written
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Hence 

ø (/-(.r))
t (/•(.r)-/g)+-(f(.r)-g)

ß~"

so that
(«*(/»' = <i>(.n

Then 6. is a simple consequence of the inequalities

(«> Mb {0 («}>?(«)

which were proved I. c., p. 102 and the corresponding inequalities 
for the function f'.

This completes the proof of the Correspondence Theorem.

3. Application of the Correspondence Theorem to a 
proof of the Main Theorem.

If in the Main Theorem we replace the Bp-a. p.—M space by 
the space Lp and the Bq-a. p.—M space by the space Lq and the 
mean value M by the Lebesgue integral \, we obtain a classical 
result of F. Riesz which is valid even for spaces Lp in the abstract 
case. A proof of this theorem is given in [9], Chapter III, p. 42 
and p. 47.

By use of the Correspondence Theorem we shall now deduce 
our Main Theorem from F. Riesz’s result. Let p be a fixed 
number, 1 5íp<oc. It follows easily from the Correspondence 
Theorem that the mapping

(4) A-+A'

where A is a bounded linear functional on the Bp-a. p.—-M space 
and A' is the functional on the space Lp over /?M defined by

A'f = Af

is a one-to-one linear isometric mapping of the dual space of 
the p.—M space on the dual space of the space Lp. However,
on account of Riesz’s theorem the mapping

(>’)
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where
AAD = Sf(F)

is a one-to-one linear isometric mapping of the dual space of 
/?' over 7?M on the space Lq over 1?M. Finally, by the Correspon­
dence Theorem the mapping

(6)

is a one-to-one linear isometric mapping of the space L7 over 
/?M on the Bq-a. p.—M space and

P'(F) =
for every Bp-a. p.—M function f and every Bq-a. p.—M function 
g. The mapping

which results from the mappings (4), (5), (6) is then a one-to-one 
linear isometric mapping of the dual space of the Bp-a. p.—M 
space on the Bq-a. p.—M space, and

A„f= =

This completes the proof of the Main Theorem.

Appendix.
I’he following theorem shows that for a given module M of 

real numbers and a fixed p, 1 p < oc, the Bp-a. p.—M space 
and the VVp-a. p.—M space have the same dual space.

Theorem. Let M be a module of real numbers and p, q tmo 
numbers, 1 p < oc, 1 < q < oc, satisfying 1/p + 1 /</ — 1. 
Then the dual space of the Wp-a. p.—M space is isomorphic to 
the Bq-a. p.—M space. The isomorphic mapping is given by Ag—> g 
where Ag is the bounded linear functional on the Wp-a. p.—M 
space given by Agf = fg}.

Proof. For any H7/,-a. p. function /we have || f\\l{i> = ||/’||wp, 
for by I, 1, 5. the function |/'(.r) |p is Mzl-a. p. so that
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lim i^|/’(æ)|Prfæ
T -> oo 1 ’a

exists uniformly in a. Further every Bp-a. p.—M function may 
be /^’-approximated by Wp-a. p.—M functions, for it may even 
be /^'-approximated by a. p.—M functions. It follows from this 
that every bounded linear functional on the \Vp-a. p.—M space 
extends itself in unique fashion by Bp-continuity to a bounded 
linear functional on the Bp-&,. p.—M space with the same norm 
as the original functional, and that conversely every bounded 
linear functional on the Bp-a. p.—M space induces a bounded 
linear functional on the Wp-a. p.—M space. Our theorem is then 
a consequence of the Main Theorem.
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